Complex differential equals de Rham derivative
Statement
Suppose is an open subset, and is a holomorphic function. Let denote the complex differential of . Then, we have:
Here, denotes the de Rham derivative of .
Definitions used
Let us write:
where are respectively the real and imaginary parts of .
Then, we define:
And we define:
Facts used
We use the fact that since is holomorphic, then:
Proof
We observe that:
We now expand using the first description of , and .