Principal part

From Companal
Revision as of 00:15, 27 April 2008 by Vipul (talk | contribs) (New page: ==Definition== Suppose <math>U \subset \mathbb{C}</math> is an open subset and <math>z_0 \in U</math>. Suppose <math>f:U \setminus z_0 \to \mathbb{C}</math> is a holomorphic function,...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Definition

Suppose is an open subset and . Suppose is a holomorphic function, so is an isolated singularity of . The principal part of at is defined in the following equivalent ways:

  • It is the function given in a neighborhood of by the part of the Laurent series for about , comprising only the negative powers.
  • It is the unique function (upto germ equivalence at ) such that is a holomorphic function, and such that has no nonnegative powers in its Laurent series expansion.