Complex differential equals de Rham derivative: Difference between revisions

From Companal
(New page: ==Statement== Suppose <math>U \subset \mathbb{C}</math> is an open subset, and <math>f: U \to \mathbb{C}</math> is a holomorphic function. Let <math>f'</math> denote the [[complex dif...)
 
Line 17: Line 17:
Then, we define:
Then, we define:


<math>df := \frac{\partial u}{\partial x}dx + i \partial{v}{\partial x} dx + \frac{\partial u}{\partial y} dy  + i \frac{\partial v}{\partial y} dy</math>
{{quotation|<math>df := \frac{\partial u}{\partial x}dx + i \frac{\partial v}{\partial x} dx + \frac{\partial u}{\partial y} dy  + i \frac{\partial v}{\partial y} dy</math>


And we define:
And we define:


<math>f'(z)dz = f'(z)(dx + i dy)</math>
{{quotation|<math>f'(z)dz = f'(z)(dx + i dy)</math>}}


==Facts used==
==Facts used==

Revision as of 19:07, 26 April 2008

Statement

Suppose UC is an open subset, and f:UC is a holomorphic function. Let f denote the complex differential of f. Then, we have:

df=f(z)dz

Here, df denotes the de Rham derivative of f.

Definitions used

Let us write:

f(z)=u(z)+iv(z)

where u,v are respectively the real and imaginary parts of f.

Then, we define:

{{quotation|df:=uxdx+ivxdx+uydy+ivydy

And we define:

f(z)dz=f(z)(dx+idy)

Facts used

We use the fact that since f is holomorphic, then:

f(z)=ux+ivx=vyiuy

Proof

We observe that:

f(z)dz=f(z)(dx+idy)=f(z)dx+if(z)dy

We now expand f(z)dx using the first description of f(z), and f(z)dy</math?usingtheseconddescription,andobservethatwegetthepreciseexpressionfor<math>df.