Schwarz lemma: Difference between revisions

From Companal
(New page: ==Statement== Let <math>D</math> denote the open unit disc. Any holomorphic map <math>f:D \to D</math> with <math>f(0) = 0</math> satisfies: <math>|f(z)| \le |z| \ \forall \ z \in D<...)
 
m (6 revisions)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{basic fact}}
{{application of|maximum modulus principle}}
==Statement==
==Statement==


Line 9: Line 11:
<math>|f'(0)| \le 1</math>
<math>|f'(0)| \le 1</math>


Moreover, if there is any point <math>z \ne 0</math> such that <math>|f(z)| = |z|</math>, then <math>f</math> is a rotation about zero, i.e. there exists <math>\alpha \in \mathbb{C}</math> with <math>|\alpha| = 1</math>, such that:
Moreover, if there is any point <math>z \ne 0</math> such that <math>|f(z)| = |z|</math> OR if <math>|f'(0)| = 1</math>, then <math>f</math> is a rotation about zero, i.e. there exists <math>\alpha \in \mathbb{C}</math> with <math>|\alpha| = 1</math>, such that:


<math>f(z) = \alpha z \ \forall \ z \in D</math>
<math>f(z) = \alpha z \ \forall \ z \in D</math>
Line 19: Line 21:
==Applications==
==Applications==


* [[Schwarz-Pick lemma]]
* [[Schwarz-Pick lemma for disk]]
 
==Proof==
==Proof==


Consider the function:
Consider the function:


<math>g(z) := \frac{f(z)}{z} (z \ne 0), \qquad, f'(0), (z = 0)</math>
<math>g(z) := \frac{f(z)}{z} (z \ne 0) \qquad, \qquad f'(0), (z = 0)</math>


Clearly, <math>g</math> is a [[holomorphic function]] on <math>D</math>.
Clearly, <math>g</math> is a [[holomorphic function]] on <math>D</math>.

Latest revision as of 19:18, 18 May 2008

This article gives the statement, and possibly proof, of a basic fact in complex analysis.
View a complete list of basic facts in complex analysis

This fact is an application of the following pivotal fact/result/idea: maximum modulus principle
View other applications of maximum modulus principle OR Read a survey article on applying maximum modulus principle

Statement

Let D denote the open unit disc. Any holomorphic map f:DD with f(0)=0 satisfies:

|f(z)||z|zD

and:

|f(0)|1

Moreover, if there is any point z0 such that |f(z)|=|z| OR if |f(0)|=1, then f is a rotation about zero, i.e. there exists αC with |α|=1, such that:

f(z)=αzzD

Facts used

Applications

Proof

Consider the function:

g(z):=f(z)z(z0),f(0),(z=0)

Clearly, g is a holomorphic function on D.

Now, for any r(0,1), we have:

max|z|=r|g(z)|1r

Thus, by the maximum modulus principle, we get:

max|z|r|g(z)|1r

Taking the limit as r1, we get:

maxzD|g(z)|1

which yields that |f(z)||z| for all z and |f(0)|=1. Moreover, if |g(z)|=1 for any zD, then the maximum modulus principle forces g to be a constant function with modulus 1.