Difference quotient of holomorphic function is holomorphic: Difference between revisions

From Companal
No edit summary
m (3 revisions)
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
Suppose <math>U \subset \mathbb{C}</math> is an open subset and <math>f:U \to \mathbb{C}</math> is a [[holomorphic function]]. Consider the function <math>F: U \times U \to \mathbb{C}</math> given by:
Suppose <math>U \subset \mathbb{C}</math> is an open subset and <math>f:U \to \mathbb{C}</math> is a [[holomorphic function]]. Consider the function <math>F: U \times U \to \mathbb{C}</math> given by:


<math>F(z,w) := \frac{f(z) - f(w)}{z - w}, (</math> if <math>z \ne w),  \qquad f'(z), (</math> if <math>z = w)</math>
<math>F(z,w) := \frac{f(z) - f(w)}{z - w}, (z \ne w),  \qquad f'(z), (z = w)</math>


Then, for any fixed value of <math>w \in \mathbb{C}</math>, the function:
Then, for any fixed value of <math>w \in \mathbb{C}</math>, the function:

Latest revision as of 19:12, 18 May 2008

Statement

Suppose UC is an open subset and f:UC is a holomorphic function. Consider the function F:U×UC given by:

F(z,w):=f(z)f(w)zw,(zw),f(z),(z=w)

Then, for any fixed value of wC, the function:

zF(z,w)

is holomorphic.